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Abstract. The meteorological input parameters for urban and local scale dispersion models can be

evaluated by pre-processing meteorological observations, using a boundary-layer parametrization

model. This study presents a sensitivity analysis of a meteorological pre-processor model (MPP-

FMI) that utilises readily available meteorological data as input. The sensitivity of the pre-processor

to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was

TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are

implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in

the atmosphere, and in particular on the sensitivity of the predicted inverse Obukhov length and

friction  velocity  on  the  model  input  parameters.  The  study  shows  that  the  estimated  inverse

Obukhov length and friction velocity are most sensitive to wind speed, and second most sensitive to

solar  irradiation.  The dependency on wind speed is  most  pronounced at  low wind speeds.  The

presented results have implications for improving the meteorological pre-processing models. AD is

shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on

the model input values quantitatively. A wider use of such advanced sensitivity analysis methods

could  potentially  be  very  useful  in  analysing  and  improving  the  models  used  in  atmospheric

sciences.

 1 INTRODUCTION

Any urban or  local  scale  dispersion model  requires  specific  information  about  the state  of  the

atmospheric  boundary  layer  (ABL)  as  input  values.  This  information  can  be  estimated  from

available meteorological observations by so-called meteorological pre-processors (e.g., Van Ulden
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and Holtslag, 1985). This allows for the use of advanced meteorological input data into the models,

even when no atmospheric  turbulence measurements would be available.  These evaluations are

commonly done by applying an energy-flux method that estimates turbulent heat and momentum

fluxes in the boundary layer to derive desired boundary-layer scaling parameters (e.g., Fisher et al.,

2001; Van Ulden and Holtslag, 1985). 

The urban scale dispersion models at the Finnish Meteorological Institute (FMI) rely on advanced

meteorological input from a meteorological pre-processor that is mainly based on the boundary-

layer parametrization of  Van Ulden and Holtslag (1985). These dispersion models include, e.g., a

Gaussian road network dispersion model (CAR-FMI,  Kukkonen et al., 2001; Kauhaniemi et al.,

2008) and  an  urban  multiple  source  Gaussian  dispersion  model  (UDM-FMI,  Karppinen  et  al.,

2000b). The models are used to model emissions, dispersion and transformation of pollution for

urban areas.

Model sensitivity studies can be done using algorithmic differentiation (AD), which is a technique

to  compute  partial  derivatives  by  differentiation  of  the  functions  and operations  that  comprise

computer programmes. In this study a source transformation AD tool called TAPENADE (Hascoët

and Pascual, 2013) is employed to differentiate the procedures of a meteorological pre-processor.

TAPENADE was chosen because it is the only Fortran source transformation tool that is free for

academic use, actively supported and developed, and is well documented.

In essence, an AD tool will produce a differentiated set of the equations of a code, based on the

sequence  of  operations  that  the  computer  program comprise.  The  differentiated  code  will  also

compute, in addition to the original outputs, the partial derivatives of the outputs with respect to the

pre-processors  inputs  at  machine  precision.  In  the  source  transformation  method  of  AD,  an

additional set of statements is added (in text) to the computer program that propagates the derivative

information through the computer program. In this way, a standard (Fortran in this case) compiler

can be used which is not the case for the other AD methods (such as operator overloading and AD

enabled compilers).

AD  has  applications  that  span  multiple  disciplines  of  science  such  as  engineering,  physics,

chemistry, medicine, where it can be used for e.g. sensitivity analyses, optimisation, and inverse

problem solving, etc. (Griewank and Walther, 2008). In fact, AD has applications wherever partial

derivatives  of  computer  programmes can be made useful.  It  is  not  the intention to  give a  full

literature  review  of  research  that  has  benefited  from  AD  but  rather  a  brief  overview  of  its

applications in geophysical research and in particular using TAPENADE.
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The AD tool TAPENADE has been used for a variety of different physics models as follows. A

general purpose atmospheric radiative transfer model for remote sensing applications made use of

the  superior  numerical  accuracy  of  AD,  in  comparison  to  finite  difference  perturbations,  for

evaluation of satellite trace gas spectra (Schreier et al., 2014). Moreover, the AD method was later

recommended for the same model due to lower computational cost and greater numerical accuracy

when solving non-linear inverse radiative transfer problem through iteration (Schreier et al. 2015).

A meteorology–chemistry  coupled  model  also  made  use  of  AD  source  transformation  when

developing  a four-dimensional variational data assimilation procedure for the model (Guerrette and

Henze,  2015).  TAPENADE  has  also  been  used  for  a  sensitivity  study  of  a  sea-ice  model  to

determine   optimal  model  parameters  in  a  minimisation  algorithm  (Kim  et  al.,  2006).  More

information and literature on AD can be found through the community driven portal for algorithmic

differentiation (www.autodiff.org).

The sensitivity on input data of the above mentioned meteorological pre-processing method has not

previously been systematically investigated. The aim of this study is to quantitatively determine the

sensitivities  of  meteorological  output  parameters  on  model  input  for  the  meteorological  pre-

processor MPP-FMI (Karppinen et al., 1997, 2000a). This procedure is useful for analysing in detail

the functioning of the computer  program corresponding to  the model MPP-FMI. The modelled

sensitivities can also be compared to what would be physically feasible, based on a consideration of

the relevant atmospheric processes. This will provide a useful additional test regarding the correct

functioning of the computer code and the numerical procedures of the MPP-FMI model.  Such a

thorough and quantitative sensitivity analysis also provides new information and insights regarding

the further refinement of such models.

 2 METHODS

 2.1 The meteorological pre-processor MPP-FMI

The meteorological pre-processor is used to estimate turbulent fluxes, atmospheric stability, and

boundary-layer scaling parameters  based on meteorological observations at  fixed locations.  The

scope of this study is to determine the sensitivity of this  model for deriving the vertical fluxes in

the boundary layer. However, we have not addressed the the routines within the MPP-FMI model

that deal with radiosonde data, to estimate the convective velocity scale (i.e. Deardorff velocity),

vertical temperature gradient, and mixing height. The scope of the study is depicted in Fig. (1). 

The meteorological observations used by the MPP-FMI model as input comprise temperature (T2),
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wind speed (U) and wind direction at a height of 10 m, amount of predominant clouds (CC), cloud

height (CZ), sunshine fraction, state of the ground (wet, dry, snow, ice etc.), and precipitation. These

are needed by the pre-processor in order to model boundary-layer scaling parameters required by

the urban scale  dispersion models. 

MPP-FMI is originally based on the work by  Van Ulden and Holtslag (1985) with modifications

that makes the parametrisation more suitable for high latitudes and urban areas  (Karppinen et al.,

1997, 2000a). Central to this method is the surface heat-budget equation

Q*−QG=QH +QE . (1)

In Eq. (1), Q* is the surface net radiation, QG is the soil heat flux, QH is the sensible heat flux and QE

is  the  latent  heat  flux.  The  terms  that  comprise  Eq.  (1)  are  not  commonly  available  from

measurements (although there are measurements of eddy-covarince at some research sites; Wood et

al.,  2013) and  are  therefore  estimated  by  the  meteorological  pre-processor.  A comprehensive

description of MPP-FMI is already available in literature (Karppinen et al., 1997). However, a brief

4

Figure 1: A schematic diagram on the flow of information of the meteorological pre-processor MPP-FMI.
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overview of the model structure will be presented in the following for convenience. 

First, the meteorological pre-processor estimates available energy Q*–QG by decomposing the terms

into components of (i) net shortwave radiation using incoming shortwave radiation and albedo, (ii)

net longwave radiation from surface radiative temperature and cloud-base radiation temperature

(specific for MPP-FMI) using a constant dry adiabatic lapse-rate and cloud-base height, and (iii)

estimated heat flux into the ground from estimated temperature difference between the ground and a

reference height of 50 metres. Then, the term QE is estimated using a simplified Penman-Monteith

equation (Van Ulden and Holtslag, 1985). Consequently, an estimate of the sign of QH is obtained

which will  determine if  the subsequent calculations are to be done using stability functions for

stable or unstable conditions.

According to surface-layer similarity theory, both friction velocity (u*) and temperature scale for

turbulent heat transfer (θ*) can be expressed as vertical profiles. For u*, which is a measure of the

surface production of turbulent kinetic energy, the equation is

u*=
U(z)k

ln ( z
z0

)−ψM( z
L )+ψM( z0

L )
.

(2)

In Eq. (2),  U is wind speed at height  z, z0 is the surface roughness length,  k is the von Karman

constant, and the terms ψM are stability functions; see Appendix A for details.  L is the Obukhov

length which is an atmospheric stability measure that describes the relative importance of surface

production of turbulence due to shear stress and buoyancy forces.

Similarly to u*, θ* can be written as

θ*=
k [θ( z2)−θ(z1)]

ln( z2

z1
)−ψH( z2

L )+ψH( z1

L )
,

(3)

where  z1 and  z2 are  arbitrary heights  in  the  surface layer,  θ is  the  potential  temperature  at  the

respective heights, and the terms  ψH are stability functions. Both Eqs (2 and 3) and their respective

stability functions are used as described in Van Ulden and Holtslag (1985). Using Eq. (3), θ(z2) at a

reference height of 50 m can be modelled from measurements of θ(z1). This is done by solving θ*

from the definition of L

L=
u*

2 θ

k gθ*

(4)

and substituting it into Eq. (3). In Eq. (4)  g is the acceleration due to gravity. This completes the
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modelling  of  θ* using surface-layer  similarity  theory using the  profile  method  (Van Ulden and

Holtslag, 1985).

In addition to Eqs (3) and (4),  θ* can also be estimated using the energy-budget method derived

from the modified Penman-Monteith equation

θ*=( αS
S+1

−1)( Q*−G
ρ c pu*

)+αθd , (5)

where  α is  the Priestley-Taylor moisture parameter,  S is  the saturation enthalpy curve of water

vapour, ρ the density of air, cp is the specific heat capacity of air, and θd is an empirical temperature

scale. The derivation of Eq. (5) is done using the equations in Van Ulden and Holtslag (1985). In

MPP-FMI, however,  the parametrisation of  S is  different  from that  of  Van Ulden and Holtslag

(1985) in order to extend the temperature range of the parametrisation. Both parametrisations are

very similar and are solely functions of surface temperature.

Finally, the value for L is found iteratively by changing L until θ* from the profile method is equal

to  θ* from the energy-budget  method of  Eq.  (5);  namely Eq.  (5) is  equal  to  u*
2  θ/(k g L).  This

iteration will consequently impact u* and  θ* as described above. In addition, Q*, G, QH, and QE will

also change during the iteration because of the stability functions of Eqs (2) and (3).

 2.2 Algorithmic differentiation

Algorithmic differentiation (AD) deals with the numerical evaluation of derivatives of functions

that are implemented in a computer programme. Any computer program, no matter how complex,

performs  a  sequence  arithmetic  operations  (addition,  subtraction,  division,  etc.)  or  elementary

functions (exponential, trigonometric, etc.) whose derivatives are known. AD exploits this fact by

applying the chain rule of differentiation to the entire sequence of operations within the program

(Griewank  and  Walther,  2008).  This  systematic  approach  yields  numerical  derivative  values  at

machine precision, which describe how the program's results (i.e. outputs) depend on its inputs. The

AD method performs each differentiation  operation at  machine precision  and does  not  employ

approximate  techniques,  such  as  finite  differences.  For  this  reason  AD  does  not  suffer  from

truncation or round-off errors.

AD is further separated into two modes, a forward mode or a reverse mode (Griewank and Walther,

2008). Here the discussion will be limited to the forward mode, which has been employed in this

study. As a starting point, consider an arbitrary computer program that takes n input variables and

returns m outputs. It can be described as a vector-valued function
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y=F (x) , (6)

such that, the function F maps ℝ
n
→ℝ

m where x∈ℝ
n defines the input and y∈ℝ

m the output

vectors.

Application of the forward mode AD to Eq. (6) yields a new implementation of the program, which,

in addition to the original function evaluation, evaluates its differential

ẏ k=F'(x)ẋk . (7)

In  Eq.  (7), F'(x)∈ℝ
m×n defines  the  Jacobian  matrix,  which  contains  all  first-order  partial

derivatives  ∂ y /∂ x and ẋ k=(∂ x1/∂ xk ,... ,∂ xk /∂ xk , ...,∂ xn/∂ xk)
T is the seeding vector, which

can be viewed as the kth unit vector that operates on the Jacobian. The result is the kth column from

the Jacobian matrix ẏ k=(∂ y1/∂ xk ,∂ y2/∂ xk ,... ,∂ y m/∂ xk)
T which yields the dependency of all

outputs with respect to the user-specified xk input parameter. In the forward mode differentiated

computer  program, the  derivative evaluations  based on the  chain rule  contained in  Eq.  (7)  are

performed following the same order as the associated operations in Eq. (6), but always such that the

derivative  operations  are  executed  after  their  corresponding  step  in  the  original  program have

completed.

A typical goal in sensitivity analysis is to obtain the full Jacobian. Utilizing forward mode AD, this

is achieved by repeating the computation of Eq. (7) n times to yield all the columns of the Jacobian

matrix.  This  is  best  illustrated  with  an  example  matrix  (Eq.  8)  where  the  first  column of  the

Jacobian is chosen. Thus, for a given input x one can construct the Jacobian using AD and extract

the derivatives of the output of interest at that point. This procedure can then be repeated for any

number of points.

ẏ 1=[
∂ y1

∂ x1

∂ y2

∂ x1

⋮
∂ ym

∂ x1

]
⏟
ẏ k =1 ∈ℝ

m

=[
∂ y1

∂ x1

∂ y1

∂ x2

…
∂ y1

∂ xn

∂ y2

∂ x1

∂ y2

∂ x2

…
∂ y2

∂ xn

⋮ ⋮ ⋱ ⋮
∂ ym

∂ x1

… …
∂ ym

∂ xn

]
⏟

F ' (x)∈ℝ
m×n

[
1
0
⋮
0
]

⏟
ẋ k =1∈ℝ

n

(8)

The reverse mode of AD is not applied in this work because the number of input variables are

roughly the same as the number of output variables (m≈n). The reverse mode should be favoured

when n>>m (Griewank and Walther, 2008). Again, the differentiation was performed using the AD
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tool  called TAPENADE  (Hascoet  and Pascual,  2013).  TAPENADE has  been developed by the

French  National  Institute  for  computer  science  and applied  mathematics (Inria)  and is  free-of-

charge through a web-based user interface.

 3 RESULTS

Input parameters that are used in table lookups are in this work replaced by the parameters that are

the outcome of the table lookup (Appendix B). Namely, precipitation and state-of-the-ground input

data are used in a table lookup to estimate a value for the Priestley-Taylor moisture parameter  α,

whereas state-of-the-ground is used to estimate the surface albedo (r).  From a sensitivity study

point-of-view, it makes more sense to be able to assess the sensitivity to α and r directly, rather than

the sensitivity of the table lookup procedure. Therefore, in this work, the table lookup variables r

and α are included as inputs to the MPP-FMI, which also reduces the number of input variables to

be  analysed.  Thus,  the  sensitivity  analysis  becomes  more  straightforward  to  interpret  because

inherent step-functions of table lookups are circumvented.

In addition to replacing the table lookup with parameters that result from the lookups, the sunshine

fraction has  been replaced with net  incoming solar  radiation at  the surface (RS).  Replacing the

sunshine fraction with  RS is motivated by an increased availability of direct measurements of  RS.

Originally the sunshine fraction is used in a regression to derive RS (Karppinen et al., 1997). 

 3.1 Obukhov length sensitivity

We have selected the ranges of the input parameters for the sensitivity analysis to be the commonly

occurring ones in the meteorological and environmental conditions in the city of Helsinki, Finland.

For instance, the ambient temperatures were assumed to range from -20 °C to + 30 °C. These ranges

have been presented in Table 1. 

Table 1. Range of parameters used for studying the sensitivity of L-1. For each range, six points were linearly

spaced within the range. This amounts to 68 (1.7 million) combinations of input variables to be evaluated;

resulting in 68 Jacobian matrices. In the table,  z0 is the roughness length,  r is the surface albedo,  T2 is the

temperature at the height of two metres, CC is the cloud cover, U is the wind speed at 10 m, α is the Priestley-

Taylor moisture parameter and RS is the solar irradiance.

Inputs z0 [m] r T2 [ºC] CC CZ [m] U [m s-1] α RS [W m-2]

Range 0.3–1.3 0.05–0.7 -20–30 0–1 30–6000 1–20 0.5–1.0 0–900
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The values in Table 1 were then used to construct the Jacobian (Eq. 8) for every combination of the

meteorological input variables. The rows of interest for this work are those rows in the Jacobian

containing the sensitivity information of  L-1 and u* since these are further needed in the Gaussian

dispersion  models  CAR-FMI and UDM-FMI.  In  addition  to  L- 1 and  u*, the  Jacobian  comprise

sensitivity information for the quantities QH, QE, Q*, and θ* to the respective input variables listed

in Table 1.

The range and units of the input variables varies greatly. Therefore, the inter-comparison of partial

derivatives of the outputs with respect to the input data as such is not desirable. In order to make the

partial derivatives inter-comparable, the partial derivatives have been normalized by 10% of the

input range of the respective input variables denoted  Δxi. The range of the input data is listed in

Table 1.

In Fig. (2), the sensitivity of the inverse Obukhov length (L- 1) is shown for all combinations of the

input parameters listed in Table  1.  L- 1  describes the atmospheric stability. For neutral conditions

L- 1≈0. When  L- 1<<0 the atmosphere is unstable, and when  L- 1>>0 the atmosphere is stable.  For

clarity, Fig. (2) is further separated into a low wind-speed situation with all other input variables

varied (the main figure). The insert figure contains all combinations of input parameters associated

with wind speeds in the range of 4–20 m s-1. The figure is separated into a low and high wind speed

situation because the model is much more sensitive to input data when the wind speed is low;

U≈1 m s-1.

An obvious  conclusion  based on the  results  in  Fig.  (2)  is  that  the  wind speed  U is  the  most

important parameter, and the solar irradiation RS is the second most important one, with respect to

the predicted values of the inverse Obukhov length.  This result could also be physically expected,

since wind speed is the most obvious factor in terms of the formation of mechanical turbulence,

whereas solar irradiation is a crucial parameter for the thermally induced turbulence. 

As can be seen from Fig. (2), L- 1 is most sensitive to a change in U. When compared to the insert

(4≤U≤20 m s–1), the sensitivity to a change in wind speed is more pronounced at low wind speeds.

When  L–1 is negative, which is the case of unstable and neutral conditions, the partial derivative

∂L- 1/∂U is positive. That means that an increase in U will always favour the modelled stability to

become more neutral. That is, a negative  L–1 and a positive partial derivative of ∂L–1/∂U will tend to

move L–1 towards neutral given that U increases.
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Conversely, when L- 1>0 (i.e. stable to neutral), then ∂L- 1/∂U is always negative. This means that an

increase in  U will therefore, again, tend to make  L- 1 move towards neutral. This is in agreement

with what one would expect in nature since an increase in  U will induce mechanical turbulence

regardless of the initial stability and hence favour neutral conditions. At higher values of U, seen in

the insert of Fig (2), the  L- 1 range in now restricted to roughly the range of -0.03–0.01 (i.e. neutral).

The second most important input variable for the pre-processor with regard to L- 1 is RS. The partial

derivative ∂L- 1/∂RS for all considered combination of input values remains exclusively negative, and

even more so when  L- 1>0. This means that an increase in RS will always move the stability towards

unstable.  This  follows  the  intuition  that  an  increase  in  RS will  increase  buoyancy  induced

10

Figure 2. Sensitivity of inverse Obukhov length (L-1) with respect to input variables of MPP-FMI. The main

figure shows sensitivities to all the input variables when the wind speed (U) is 1 m s–1. The insert shows

sensitivities for wind speeds in the range of 4–20 m  s–1.  In the figure,  the partial  derivatives have been

normalised by the range of the input parameters (Δxi) described in Table  1 in order to make them inter-

comparable.
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turbulence, therefore favouring an unstable boundary layer. At low wind speeds, it has to be noted,

that  the  spread  in  the  sensitivity  of  L- 1 to  RS,  is  an  indication  that  other  meteorological  input

variables  influence  the  results,  especially  when  L- 1>0.  This  is  evident  from  the  fact  that  the

sensitivity to RS does not follow a single line, but is spread out. For example when  L- 1=0.3 m-1, then

∂L- 1/∂RS  is in the range of -0.1–0.6 m–1.  The highest sensitivity to a change in  RS,  at  low wind

speeds, is when RS is close to zero and the surface albedo (r) is low. This information is, however,

not colour coded into the figure (so as not to degenerate the clarity of the figure).

 3.2 Friction velocity sensitivity

The other important scaling parameter for the Gaussian models is u*. Moreover, u* is also central for

the iteration procedure in the pre-processor when finding a value for  L- 1. Table 2 summarizes the

input variable ranges for the u* sensitivity analysis. The variable range used for the sensitivity study

of u* differs from that of L- 1 in case of the selected wind speeds; the extremely high wind speeds

(from 12 to 20 m/s) have been omitted in case of the u* sensitivity analysis. The latter selection was

made in order to be able to present the results more clearly; the highest wind speeds also occur only

for a small fraction of time. The sensitivity of u* to different input variables is depicted in Fig. (3). 

As for the corresponding results for L- 1, the wind speed U was the most important parameter, and

the solar irradiation RS was the second most important one. This result is physically to be expected

also in case of the sensitivity of u*.

Table 2. Range of parameters used for studying the sensitivity of u*.  Six points were linearly spaced within

the range, except for  U which comprise 10 logarithmically spaced points which amounts to roughly 2.8

million combinations of input variables. In the table, z0 is the roughness length, r is the surface albedo, T2 is

the temperature at the height of two metres, CC is the cloud cover, U is the wind speed at 10 metres, α is the

Priestley-Taylor moisture parameter and RS is the solar irradiance.

Inputs z0 [m] r T2 [ºC] CC Cz [m] U [m s-1] α RS [Wm-2]

Range 0.3–1.3 0.05–0.7 -20–30 0–1 30–6000 1–12 0.5–1.0 0–900

Amongst the input parameters, only  U and  z0 are present in the equation for  u*. The rest of the

sensitivity of u* is, to a varying degree, related to the cross sensitivity between L- 1 and u* through

Eqs (2-5). Since u* is a scaling parameter for the production of turbulent kinetic energy due to shear

stress, u* is generally high for high values of U. Thus, a generalisation can be made that u* is most

sensitive to U at low wind speeds. Furthermore, the stability functions ψM of Eq. (2) will increase u*
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the more negative (unstable)  L–1  becomes and decrease  u* the more positive (stable)  L- 1 becomes;

see Appendix A. For neutral stability (L- 1≈0), the stability functions ψM of Eq. (2) yield very similar

results for u*. At higher wind speeds, the value of z0 determines to a greater extent the sensitivity of

∂u*/∂U. This is clearly visible when u*>1 as six vertically separated groups of points in Fig. (3); six

groups because of six different values of z0. This is, however, not colour coded into the figure so as

not to degenerate the clarity of the figure.

The second most important input parameter for u* is RS. This holds true for low values of u*. Based

on the discussion regarding the sensitivity of  L- 1 this is expected. However, from Eq. (2) it is not

that clear that u* is sensitive to the solar radiation input into the pre-processor. Again, as RS changes,

this will impact the absolute values that comprise the energy budget equation; see Eq. (1). This in

12

Figure 3: Sensitivity of friction velocity (u*) with respect to input variables of MPP-FMI. The main figure

shows sensitivities of the most important input variables whereas the inserts show the less sensitive input

variables. The partial derivatives have been normalised by the range of the input parameters (Δxi) described

in Table 2 in order to make them inter-comparable.
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turn will impact θ* which consequently impacts L–1  and ultimately u* through the stability functions.

However, at high u* the importance of z0 will be more important for the modelled value of u* than RS

as depicted in the figure. Opposite to the sensitivities to U, RS and z0, an increase in surface albedo

(r) will lower u* through L- 1.

 3.3 Cross sensitivity

The sensitivity study of L- 1 and u* has shown that U is the most important parameter for MPP-FMI.

L- 1 is highly sensitive to a change in U when U≈1 m s–1. Moreover, u* is also most sensitive to U.

Because u* is a function of L- 1 (Eq. 2) and L- 1 is a function of u* (Eq. 4) these scaling parameters are

interconnected. Thus, these scaling parameters are cross-sensitive.

Figure (4) shows the how the cross sensitivity between ∂u*/∂U and L- 1. The figure shows that the

13

Figure  4: Cross sensitivity between atmospheric stability (L–1) and friction velocity (u*) with respect to

wind speed (U) for different surface roughness lengths (z0). Not all  z0 values in the range are plotted for

clarity. Note that the y-axis of Fig. (4) is not scaled as in the previous figures because there is no inter-

comparison between different input data in this figure.
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largest sensitivity of  ∂u*/∂U will be when  L- 1 is around 0.1 m- 1; i.e. mildly stable. The different

behaviour of ∂u*/∂U when L- 1>0 is likely due to the increased complexity of the stability functions

(Ψm in Eq.  2) for stable conditions than for unstable conditions; see Appendix A for details.  This

behaviour is not captured in Figs (2) and (3) although it could perhaps be inferred. This behaviour is

also likely to be the case for real atmospheric conditions since a mildly stable boundary layer would

be susceptible to increasing U and consequently the production of wind shear induced turbulence

which would cause u* to increase. For highly stable conditions the sensitivity of ∂u*/∂U levels out

and is below the sensitivity for unstable conditions.

For  unstable  conditions  (L- 1<<0),  the  sensitivity  of  ∂u*/∂U is  less  complex  and  the  degree  of

sensitivity is largely dictated by z0; which also holds true for mildly stable conditions. Without the

stability functions  ψM and ψH a cross sensitivity would still  remain; however, not as intricate as

depicted in Fig. (4). 

 4 CONCLUSIONS AND DISCUSSION

The sensitivities of the meteorological  pre-processor model  MPP-FMI on its  input values were

examined by the means of algorithmic differentiation. The differentiation of the pre-processor was

carried  out  by  a  source  transformation  AD  tool  called  TAPENADE,  yielding  a  program  that

evaluates the desired sensitivity derivatives with machine precision accuracy. We focused on the

evaluation of vertical fluxes in the atmosphere, and in particular on the sensitivity of the predicted

inverse Obukhov length and friction velocity on the model input parameters. These two quantities

were selected, as they are key parameters in view of air pollution. 

The study shows that the predicted inverse Obukhov length and friction velocity are most sensitive

to wind speed, and second most importantly, to solar irradiation. The dependency on wind speed is

most  pronounced at  low wind speeds.  For  both  predicted  inverse  Obukhov length  and friction

velocity,  the  third  most  important  factors  are  the  roughness  length  and the  surface  albedo,  for

unstable and stable conditions, respectively. The surface roughness length determines, how sensitive

the friction velocity is to wind speed. 

The presented results have implications for improving the meteorological pre-processing models,

and for selecting and preparing the measured input values for such models. For instance, the high

sensitivity of the pre-processor to the values of the wind speed at the height of 10 m implies that the

wind observations have to be selected very carefully. Clearly, the wind speed observations should

be as representative as possible for the whole of the domain to be considered, and should not be
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affected or substantially influenced by any local disturbances. 

This study gave more confidence that AD in general, and the TAPENADE tool in particular are

useful tools of assessment for studying quantitatively the ranges of sensitivities of the predicted

parameters. The analysis is more comprehensive and versatile, compared with the use of previously

applied sensitivity analysis methods. The sensitivities can be analysed for a wide range of initial

input conditions at minimal computation time expense.

The AD procedure  is  also  useful  for  analysing  the  functioning of  computer  programs,  and for

improving their optimisation in terms of computing resources. In this study, all the dependencies of

the predicted parameters on the model input values were found to be physically understandable and

feasible. However, the procedure could also be useful for finding out potential inaccuracies of the

numerical solutions, or even mistakes in the structure of the computer codes. 

The meteorological pre-processor parametrisation scheme (that is originally based on van Ulden

and Holtslag) used in this study is in fairly common use in other countries within meteorological

pre-processors  and  dispersion  models.  The  initial  conditions  used  in  the  model  computations

corresponded to the  climate  and environmental  conditions  in  Helsinki.  However,  the  range  of

conditions at  such a northern latitude vary substantially (for instance,  the ambient temperatures

were assumed to range from - 20 °C to + 30 °C), and the more moderate climatic conditions that are

common for most of central Europe are actually included in the selected wide variability. The main

insights and conclusions found out in this study are therefore probably similar for several other pre-

processors used in Europe that use the same or a similar boundary layer scaling method.  

Future research could address the determination of how the sensitivity of MPP-FMI impacts the

modelled concentrations of pollutants. Such research could be done by source transforming a chain

of models using AD, instead of only one model. The next chain of models to be investigated could

be  a  combination  of  a  meteorological  pre-processor  and an  urban scale  dispersion  model.  The

sensitivity of the combined modelling system could also be evaluated in terms of other input values

of the dispersion model, in addition to the meteorological ones. 

CODE AVAILABILITY

The  source  code  for  the  meteorological  pre-processor  (MPP-FMI  3.0)  is  included  in  the

supplementary  material.   The  source-transformed  code  is  also  included  in  the  supplementary

material. The source transformed code is subject to the TAPENADE licence agreement which limits

the use of the code to academic research (see www-sop.inria.fr/tropics/tapenade/downloading.html).
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The supplemental material also contains the code that was used to produce the input data and a

wrapper to handle data input and output.

APPENDIX A

The empirical stability functions of Eq. (2) as implemented in the meteorological pre-processor are

ψM=(1−16 z /L)
1/4

−1 for L<0

ψM=−17(1−e−0.29 z /L
) for L>0

(A1)

The stability functions of Eq. (A1) are taken from Karppinen et al. (1997). Figure A1 shows u* as a

function of L- 1 for two different wind speeds (1 and 4 m s- 1). Note that -L- 1 and L- 1 are plotted on the

same x-axis.
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Figure A1: Friction velocity (u*) as a function of inverse Obukhov length (L- 1) for two different

wind speeds (U) using a roughness length (z0) of 0.5 m and wind speed measurement height (z) of

10 m.

355

360

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-308, 2017
Manuscript under review for journal Geosci. Model Dev.
Published: 13 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



APPENDIX B

This appendix covers the table lookup parameters that are used to estimate the surface albedo (r),

Priestley-Taylor moisture parameter (α).

The state  of the ground is  used in  a table  lookup to obtain an estimate for the surface albedo

according to surface type and the state of the ground. The table lookup procedure is shown in Table

B1. 

Table B1: Table lookup for surface albedo (r) based on surface type and state of the ground.

State of the ground

Soil Ice Snow cover (%)

Dry Moist Wet Dry Wet <50 50<100 100 50<100 100

Surface melting melting melting dry snow dry snow

Sea 0.06 0.06 0.06 0.06 0.06 0.30 0.30 0.70 0.71 0.71

Lake 0.05 0.05 0.05 0.15 0.15 0.18 0.38 0.71 0.71 0.71

Wasteland 0.13 0.13 0.13 0.13 0.33 0.44 0.55 0.67 0.67 0.67

Field 0.2 0.2 0.2 0.13 0.11 0.33 0.55 0.67 0.67 0.67

Forest 0.11 0.11 0.11 0.11 0.17 0.26 0.34 0.39 0.39 0.39

City 0.22 0.22 0.22 0.13 0.11 0.17 0.22 0.28 0.28 0.39

The Priestley-Taylor parameter estimate is estimated using a table lookup involving weather codes,

solar elevation angle, state of the ground, and precipitation during the last 12 hours (Karppinen et

al., 1997). The table lookup is illustrated by a flow chart depicted in Fig (B1).
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